首页
团队成员
研究方向
出版物
研究新闻
研究成果
集锦
招生招聘
English
Our group prepared a highly stable MOF membrane with industrial application prospects
发布时间:2022-03-25 15:54    栏目类别:Research News

Metal-organic frameworks (MOFs) bring tremendous opportunities for separation of liquid chemicals using membranes.

However, due to lack of highly compact and robust micro-architecture to cope with complicated and tough separation situations, MOF membranes available for liquid chemical upgrading through pervaporation are rare.

Recently, our group proposed hetero-lattice intergrown (HLI) and robust MOF membranes for polyol upgrading in industry.

This study was published in Angew. Chem. Int. Ed. on Dec. 22, 2021, and was selected as "Hot Paper".

The researchers synthesized HLI membranes, with the integration of two distinct network MOFs, namely MIL-53 (Al) and amino-MIL-101 (Cr), at molecular scale.

They demonstrated that the highly compact and robust micro-architecture was contributed to the complementary growth, concomitant with the strong connection between these two lattices.

The HLI membrane with ultra-stability showed excellent pervaporation dehydration performances for C2-C4 polyol solutions. Furthermore, polymer-grade ethanediol (99.93%) through HLI membranes could be obtained, saving ca. 32% of energy consumption relative to the traditional vacuum distillation.

"These results spotlight the potential of MOF membranes to create more solutions for current separation challenges," said Prof. YANG.

This work was supported by the National Natural Science Foundation of China. (Text by BAN Yujie and WANG Yuecheng)

The article links:https://onlinelibrary.wiley.com/doi/10.1002/anie.202114479?af=R

 

首页 / 团队成员 / 研究方向 / 出版物 / 研究新闻 / 研究成果 / 集锦 / 招生招聘 / 催化国家重点实验室 / 大连化学物理研究所 / 中国科学院

版权所有©2003-2019。催化基础国家重点实验室,无机膜与催化新材料研究组,保留所有权利。