Membranes containing metal–organic frameworks ...

... show great potential for enhancing the production of biofuel. As demonstrated by Y.-S. Li, W.-S. Yang et al. in their Communication on page 10636 ff., when incorporated into a polymer matrix, ZIF-8 nanoparticles provide preferential pathways for the permeation of organic compounds, and have resulted in a novel organophilic membrane for efficient pervaporative recovery of bioalcohols from fermentation broths.
Membranes containing metal–organic frameworks show great potential for enhancing the production of biofuel. As demonstrated by Y.-S. Li, W.-S. Yang et al. in their Communication on page 10636 ff., when incorporated into a polymer matrix, ZIF-8 nanoparticles provide preferential pathways for the permeation of organic compounds, and have resulted in a novel organophilic membrane for efficient pervaporative recovery of bioalcohols from fermentation broths.

Xin-Lei Liu, Yan-Shuo Li,* Guang-Qi Zhu, Yu-Jie Ban, Long-Ya Xu, and Wei-Shen Yang*

Metal–organic frameworks (MOFs) are novel hybrid inorganic–organic materials consisting of metal ions or clusters interconnected by a variety of organic compounds. Their versatile architectures and customizable chemical functionalities make MOFs attractive candidates for constructing separating membranes with high performance.

A number of excellent advancements in fabricating molecular sieve membranes based on MOFs have been made in recent years. Unlike traditional inorganic zeolites with "rigid" frameworks, MOFs are in general structurally flexible, which is generally used to explain the absence of a clear cut-off, as expected from the pore size estimated from rigid framework models. On the other hand, this dynamic structural behavior of the MOFs is beneficial when elasticity is favorable, for example, in adsorption-based separation, because such flexible materials can exhibit high selectivity for guest inclusion by adapting their framework structure accordingly.

Recently, zeolitic imidazolate frameworks (ZIFs), a subfamily of MOFs, received tremendous attention because of their exceptional thermal and chemical stability. One particularly interesting member of this family is ZIF-8 (with the formula zinc(2-methylimidazolate)2). ZIF-8 represents an appropriate model system and has found many applications, including selective adsorption, membrane-based separation, chromatography, catalysis, and as a sensor. In contrast to the hydrothermal synthesis of nanoperforated zeolites (e.g. silicalite-1) at high temperature and autogenous pressure, the preparation of ZIF-8 nanoparticles can be conducted at room temperature in solution, which is lower cost, saves time, and much more convenient.

Moreover, the superhydrophilicity of ZIF-8 results in it showing no adsorption of water before the onset of capillary condensation. All the above-mentioned characteristics suggest that ZIF-8 nanoparticles could be used as fillers in mixed-matrix membranes (MMMs) for the recovery of organic compounds from aqueous solutions by adopting organophilic pervaporation (OPV) technology. Pervaporation is a membrane process based on a sorption–diffusion mechanism, and is considered the most promising technology for molecular-scale liquid/liquid separations. Herein we show that both pervaporation selectivity and membrane flux of a silicone rubber membrane can be remarkably improved by doping ZIF-8 nanoparticles, which create preferential pathways for the permeation of organic compounds.

Preferred adsorption of a permeating organic species determines to a large extent its overall selectivity for OPV. To this end, an experimental and simulation study was performed to evaluate the adsorption properties of ZIF-8 nanoparticles toward bio-alcohols, in particular, isobutanol (next generation biofuels). Although the aperture size of ZIF-8 is estimated to be 0.34 nm, an exceptional high capacity for isobutanol (kinetic diameter 0.50 nm) was measured for the ZIF-8 nanoparticles, thus indicating a very flexible rather than a rigid framework structure. Figure 1a shows the adsorption isotherm for isobutanol with ZIF-8 nanoparticles (see Figures S1–S3 in the Supporting Information) at 40°C obtained using an Intelligent Gravimetric Analyzer (IGA). The isotherm can be categorized as type V, with an extraordinary plateau value of around 360 mg g⁻¹ at 3.5 kPa. This value is about four times that of the popular organophilic silicalite-1 nanoparticles. In addition, a gate-opening effect was observed at 0.5 kPa. Similar adsorption hysteresis has been observed experimentally in other types of flexible MOFs, where specific threshold pressures control the uptake and release of large individual molecules. Another interesting observation is the incomplete desorption, as evidenced from the desorption isotherm (Figure 1a). As proved by FTIR-ATR (see Figure S4 in the Supporting Information), the residual isobutanol can be completely desorbed by increasing the desorption temperature from 40 to 80°C. This finding indicates that besides pressure dependence, the gate opening can also be triggered by temperature. In the current study, no phase transformation was observed during the desorption of isobutanol, as determined by XRD (see Figure S5 in the Supporting Information), thus indicating that unlocking the openings to the cavities (sodalite cages) of ZIF-8 might occur by rotation of the methylimidazole linkers. Similar to the report from other researchers, our independent measurements (Figure 1a) show that the ZIF-8 nanoparticles, because...
of their superhydrophobicity, exhibit no adsorption of water before the onset of capillary condensation.

Configurational bias grand canonical Monte Carlo (CB-GCMC) simulations were performed to obtain a better understanding of the adsorption. The van der Waals and electrostatic interactions between the ZIF-8 framework and the isobutanol (or water) molecules were generated by employing the universal force field (UFF) and the charge equilibration (QEq) algorithm. The simulation results (both the adsorption and desorption branches, Figure 1a) are in reasonably good agreement with the experimental data, thereby indicating that the model and the UFF parameters used are suitable for describing the adsorption behavior of isobutanol in ZIF-8. Figure 1b shows the simulated density contours of isobutanol in one sodalite cage of ZIF-8 at 3.5 kPa and 40°C. van der Waals interactions make major contributions to the adsorption process. Two types of adsorption sites can be identified (Figure 1c), represented by the centers of the density contours. Site I (2 per cage) is located 0.3 nm beneath the center of the six-membered ring. Site II (4 per cage) is also located near the center of the six-ring opening, but with some deviation. The space distribution of these two types of adsorption sites (altogether 6 per cage) results in a tetragonal bipyramid with a nearest neighbor distance of about 0.6 nm.

In light of the above experimental and theoretical results, we used ZIF-8 nanoparticles as fillers, and silicone rubber (poly(methylphenyl)siloxane, PMPS) as a polymer matrix, to fabricate organophilic pervaporation membranes on the inside surface of alumina capillary substrates by the solution-blending dip-coating method. Figure 2a shows the cross-sectional SEM images of the as-synthesized ZIF-8-PMPS membrane (weight ratio, W_{ZIF-8}/W_{PMPS} = 0.10:1). The top-layer thickness is about 2.5 μm, which offers the possibility of achieving a very high permeance (flux normalized by the fugacity driving difference force). The ZIF-8 nanoparticles were embedded in the PMPS phase homogeneously, with no interfacial voids. As shown in the cross-sectional EDXS mapping (Figure 2b), there is a sharp transition between the ZIF-8 nanoparticles (Zn signal) and the substrate (Al signal). The intrusion of PMPS (Si signal) into the substrate pores can be observed, which is advantageous in terms of increasing the stability of the membrane. Both the diffraction peaks related to ZIF-8 and the broad diffuse peaks from the PMPS phase can be observed in the XRD pattern of the ZIF-8-PMPS membrane (Figure 2c).

The as-synthesized ZIF-8-PMPS capillary membrane was sealed in a home-made module and tested for pervaporation recovery of isobutanol from aqueous 1.0–3.0 wt% solutions at 80°C (see Figure S6 in the Supporting Information). The separation factor of isobutanol over H_2O, calculated as the permeate-to-retentate composition ratio of isobutanol divided by the same ratio for H_2O, ranges from 34.9 to 40.1. Thus, if the feed side of the membrane is exposed to a 1.0 wt% solution of isobutanol from a typical fermentation, the permeate will be around 30 wt% isobutanol. The energy required for pervaporation per unit of isobutanol is only half that of distillation (see Figure S7 and the detailed calculation in the Supporting Information), which indicates that replacing the energy-intensive distillation with the ZIF-8-PMPS membrane pervaporation process would be very profitable. The isobutanol permeance of the ZIF-8-PMPS membrane is 6000–7000 GPU (1 GPU = 1 × 10^{-4} cm³ (STP) cm⁻² s⁻¹ cmHg⁻¹).
which is much higher than the values of reported membranes (Figure 3, see also Table S1 in the Supporting Information). The very high permeance translates into a low membrane area for the recovery of isobutanol per unit weight, thus corresponding to lower capital investment and a smaller footprint, which is a prerequisite for constructing a membrane bioreactor. The separation factor and the high permeance of the ZIF-8-PMPS membrane clearly transcends the upper limit of state-of-the-art OPV membranes (Figure 3), and reaches the economically attractive region.

Both the membrane separation factor and the isobutanol permeability (the product of permeance and membrane thickness) increase simultaneously as the ZIF-8 loading in the composite membrane increases (see Figure S8 in the Supporting Information). This phenomenon corresponds to the desired result that the ZIF-8 nanoparticles can create preferential pathways for isobutanol molecules by virtue of their ultrahigh adsorption selectivity. The separation factor, which decreases at high ZIF-8 loading (W_{ZIF-8}/W_{PMPS} = 0.20:1), is an exception, which could be attributed to poor filler dispersion (see Figure S9 in the Supporting Information).

ZIF-7 (Zn(benzimidazolate)$_2$), see Figure S10 in the Supporting Information, has the same sodalite-like topology and superhydrophobicity as ZIF-8, but the isotherms of ZIF-7 nanoparticles show insignificant adsorption of isobutanol (see Figure S11 in the Supporting Information). This can be attributed to adsorption on the external surface. No gate-opening effect was observed within the pressure range used in the present study, possibly because of the narrower aperture size of ZIF-7 (0.30 nm) and its much more rigid framework. For comparison, a ZIF-7-PMPS membrane was prepared by the same procedure. The as-synthesized membrane showed a lower separation factor and a lower isobutanol permeance compared with the ZIF-8-PMPS membrane (see Table S1 in the Supporting Information). This finding also demonstrates that the hydrophobic channels of these ZIF-8 nanoparticles made a significant contribution to the selective permeation of isobutanol molecules.

Besides isobutanol, the ZIF-8-PMPS membrane exhibited higher selectivity and productivity for recovering other bio-alcohols from water compared with the pure PMPS membrane (Figure 4). The pervaporation performance increases with the carbon number of the alcohols because of the increased adsorption selectivity and capacity. The decrease in separation factor and permeability for n-pentanol is characteristic of the interplay of adsorption and diffusion effects. In addition, despite the larger aperture size of silicalite-1 zeolite compared with ZIF-8 (0.55 nm versus 0.34 nm), silicalite-1 membrane shows a monotonic decrease in the alcohol permeability and a noticeable cut-off between C$_3$ and C$_4$ alcohols (see Figure S12 in the Supporting Information) as a consequence of its very rigid framework compared to the relatively flexible framework of ZIF-8. The present study shows that the dynamic structural behavior of ZIF materials makes them superior to traditional zeolites in terms of pervaporation, especially for bulky molecules.

In conclusion, as a consequence of the flexible pore apertures and the superhydrophobic pore surface, ZIF-8 nanoparticles exhibit exceptional adsorption selectivity and capacity toward isobutanol molecules, and show a reversible gate-opening effect upon variation of the isobutanol pressure or temperature. As demonstrated by CB-GCMC simulations, each sodalite cage of ZIF-8 can accommodate six isobutanol molecules at 3.5 kPa. These experimental and theoretical observations encouraged us to incorporate ZIF-8 nanoparticles in silicone rubber (PMPS) membranes to fabricate organophilic pervaporation (OPV) membranes. The ZIF-8-PMPS membrane shows a very promising performance for recovering bio-alcohols from dilute aqueous solution, and offers significant potential for the construction of a membrane reactor for in situ product recovery (ISPR) applications. Both the membrane selectivity and permeability can be improved by increasing the ZIF-8 loading in the composite membrane. It is, therefore, expected that polycrystalline ZIF-
8 membranes will show much better performance. As demonstrated in the present study, and considering the very versatile architectures and customizable chemical functionalities of MOF materials, as well as the recent advances in controllable synthesis of MOF membranes, it is believed that the unique properties of MOF materials will offer a new perspective on pervaporation membranes.

Experimental Section

Alumina capillary tubes (3.7 mm OD, 2.4 mm ID, 6.0 cm length, Hyflux Ltd.) were used as supports. The pore size of the inner surface was 40 nm. The as-synthesized ZIF-8 nanoparticles were re-dispersed in isooctane (Kermel, AR) using a probe-type sonicator (AiDaPu) with the horn immersed in the sample for 10 min in an ice bath. This solution (4.5 wt%) was then allowed to warm to room temperature. The catalyst (dibutyltin dilaurate, Shanghai Resin Factory Co., Ltd.), solution (4.5 wt%) was then allowed to warm to room temperature. This mixture was sonicated for 5 min in an ice bath using a probe-type sonicator. The resulting homogenous mixture was then kept at room temperature for 10 min. The capillary tube was then dip coated into this mixture for 10 s and withdrawn at a speed of 1 mm s\(^{-1}\) using an automatic dip coater (WPTL0.01). The membrane was cured at 25°C for 24 h, 100°C for 12 h, and then kept at 100°C for another 12 h under vacuum. By trial and error, several key steps to achieve a homogeneous dispersion were identified: a) freshly synthesized ZIF-8 nanoparticles should be used; b) before mixing with PMPS, the gel-like nanoparticles should be predispersed in isooctane; c) a probe-type sonicator should be adopted instead of an ultrasonic bath.

More experimental characterization details (e.g. adsorption measurements and simulations, SEM, EDX, XRD, and pervaporation measurements) are described in the Supporting Information.

Received: June 24, 2011
Published online: September 5, 2011

Keywords: bio-alcohols · membranes · organic–inorganic hybrid composites · pervaporation

Supporting Information

© Wiley-VCH 2011

69451 Weinheim, Germany

Xin-Lei Liu, Yan-Shuo Li,* Guang-Qi Zhu, Yu-Jie Ban, Long-Ya Xu, and Wei-Shen Yang*

anie_201104383_sm_messellaneous_information.pdf
Supporting Information
Preparation of ZIF-8, ZIF-7 nanoparticles and pure PMPS membrane:

ZIF-8 nanoparticles were synthesized according to the route reported by Cravillon et al.[1] A solution of Zn(NO$_3$)$_2$·6H$_2$O (1.026 g, Aldrich, ≥99.0%) in 70 mL of methanol (BoDi, AR) was rapidly poured into a solution of 2-methylimidazole (2.072 g, Aldrich, 99%) in 70 mL of methanol under stirring at room temperature. After 1 h, the nanoparticles were separated from the mother liquid by centrifugation and washed with methanol.

ZIF-7 nanoparticles were prepared by a modified recipe reported by Li et al.[2] 140 mL N,N-dimethylformamide (BoDi, AR) was added into a solid mixture of 0.423 g Zn(NO$_3$)$_2$·6H$_2$O and 1.077 g benzimidazole (Aldrich, 98%) under stirring. After being kept at room temperature for 23 h, the product was centrifugally separated and washed with methanol.

The dense pure PMPS membrane was difficult to construct on the alumina capillary directly, and thus it was synthesized on the support modified by γ-Al$_2$O$_3$ layer. Firstly, the capillary support was modified by a γ-Al$_2$O$_3$ layer, the detail was reported elsewhere.[3] Secondly, 1.0 g of PMPS, 0.10 g of its curing agent and 0.050 g of catalyst were dissolved in 10.0 g of i-octane by ultrasonic wave for 20 min. Then, the γ-Al$_2$O$_3$ modified tube was dip-coated into this solution for 10 s and withdrawn at a speed of 1.5 cm / s. Afterwards, the membrane was cured at 25 °C for 24 h, 50 °C for 3h and then held at 50 °C for another 19 h under vacuum.

Computer simulations:

The adsorption simulations were performed at 40 °C over the pressure range of 0-3.5 kPa employing the sorption module of Materials Studio (Accelrys, Inc.). The configurational bias grand canonical Monte Carlo (CB-GCMC) [1] simulations were performed. The van der Waals (vdW) and electrostatics interactions between ZIF-8 framework and the i-butanol molecules were constructed using the universal force field (UFF) [2] and the charge equilibration (QEq) algorithm. [3] The force field and electrostatics parameters were taken from the literatures without modification. The structure data of ZIF-8 (CCDC739161) was obtained from the Cambridge Crystallographic Data Centre. [4]

Characterization techniques:

XRD (x-ray diffraction) patterns were recorded on Rigaku D/MAX 2500/PC (using Cu Kα radiation, \(\lambda = 0.154 \) nm at 40kV and 200mA).

The SEM (Scanning Electron Microscope) images and EDXS-mapping (Energy-Dispersive X-ray Spectroscopy) were performed on a Quanta 200 FEG instrument (FEI Co.). The membrane samples were prepared by freeze fraction in liquid nitrogen and sputter coated with gold.

The adsorption studies were carried out gravimetrically in an Intelligent Gravimetric Analyzer (IGA-002/3). The adsorbents were activated by heating to 100 °C and then tested at 40 °C by accurately controlling the pressure of vapor. The transient and equilibrium weight changes of the samples were measured and recorded for analysis.

Infrared spectra were acquired from a Nicolet 6700 FTIR-ATR (Fourier Transform Infrared Spectroscopy-Attenuated Total Reflectance) spectrophotometer.

Nitrogen physisorption isotherms were measured at 77 K, on a Quantachrome Autosorb Automated Gas Sorption instrument.

The feed mixtures (ca. 2.0 L) for pervaporation experiments were kept at 80 °C with a composition of 1.0-3.0 wt. % alcohol. To minimize the boundary layer effect on the membrane surface, the feed flow rate was kept sufficiently high (2.0 L / min). After circulating 10 min for stabilization, the pervaporation performance was characterized. The permeation side was kept under vacuum and the permeate was trapped with liquid nitrogen. The permeation flux was measured by weighing the condensed permeate:

\[
J = \frac{W}{A \cdot t}
\]

where W refers to the weight of permeate (kg), A the membrane area (m²), t the duration (h) of the sample collection. The feed and permeate concentrations were measured by an off-line GC (Agilent 7890). Membrane permeance is flux normalized by the fugacity driving difference force, and permeability is a the product of permeance and membrane thickness. The membrane thickness in this work was obtained from the SEM images. The driving force was simulated using the computer program CHEMCAD. The separation factor is defined as

\[
\alpha_{\text{alcohol/water}} = \frac{Y_{\text{alcohol}}}{(1 - Y_{\text{alcohol}})} \div \frac{X_{\text{alcohol}}}{(1 - X_{\text{alcohol}})}
\]

where \(X_{\text{alcohol}} \) and \(Y_{\text{alcohol}} \) denote the mass fraction of alcohol in the feed and permeate sides, respectively. In most cases for separating butanol and n-pentanol from water, the condensed permeate
separated into two phases. In order to measure the alcohol concentration in the condensate, the permeate was diluted with known quantity of water to generate a single phase.
Figure S1. XRD patterns of the as-synthesized ZIF-8 (a) and ZIF-7 (b) nanoparticles.

The XRD patterns of the as-synthesized ZIF-8 and ZIF-7 nanoparticles are in good agreement with the previous reports. [1]

Figure S2.

Figure S2. SEM images of ZIF-8 (a) and ZIF-7 (b) nanoparticles.

Ultrafine ZIF-8 (about 40 nm) and ZIF-7 (about 60 nm) nanoparticles were successfully synthesized with a narrow size distribution.
Figure S3. N$_2$ sorption isotherms of the ZIF-8 nanoparticles and (inset) corresponding Hovarth-Kawazoe pore size analysis.

The nanoparticles ZIF-8 possesses an apparent specific surface area of 918 m2 g$^{-1}$ (BET method) and the N$_2$ sorption isotherms are in good agreement with the previous report. [1]

Figure S4.

Figure S4. FTIR-ATR spectra of the i-butanol, ZIF-8, ZIF-8 adsorbed i-butanol and ZIF-8 after i-butanol desorption at 80 °C.

No apparent shifts and redundant peaks in the bands were observed for the ZIF-8 adsorbed i-butanol when compared with ZIF-8 or i-butanol. These suggested that a chemical interaction had not occurred and the adsorption is physical adsorption. At 80 °C, there is no i-butanol peaks present in the ZIF-8’s spectra, elucidating a complete i-butanol desorption.
Figure S5. The XRD patterns of ZIF-8 nanoparticles (adsorbed i-butanol) during desorption of i-butanol at 80 °C for different time. The XRD pattern of ZIF-8 nanoparticles is shown for reference.
Figure S6. Schematic diagram of the pervaporation apparatus.

1. thermostat; 2. feed tank; 3. liquid pump; 4. membrane module; 5. cold trap; 6. 3-way valve; 7. buffer vessel; 8. vacuum pump
Figure S7. Evaporation energy required for recovery butanol from water as a function of the butanol feed concentration and butanol-water separation factor. Distillation curve is shown for reference. The compiled data was abstracted from Table S1.

The energy required to evaporate permeate in a pervaporation process, normalized per unit of butanol permeated is calculated as follows:

\[
Q^\text{evap}\norm = \frac{\sum_i H_i^\text{evap} F_i}{F_{\text{BuOH}}}
\]

Where \(H_i^\text{evap} \) is the heat of evaporation of species \(i \), and \(F_i \) is the flux of species \(i \).

When butanol and water dominate the feed and the permeate, the above equation can be rewritten in terms of feed butanol concentration (wt. %, \(C_{\text{BuOH}}^\text{feed} \)) and butanol-water separation factor (\(\alpha \)) as:

\[
Q^\text{evap}\norm = H_{\text{BuOH}}^\text{evap} + H_{\text{water}}^\text{evap} \left(1 - \frac{C_{\text{BuOH}}^\text{feed}}{\alpha C_{\text{BuOH}}} \right)
\]
The residual is fixed at 0.02 wt. % butanol. The energy required to further purify the permeate is ignored (The energy required by distillation to purify a solution containing 40 wt. % butanol is about 4% of that of a solution containing 0.5 wt. % butanol). \[1\] The condensation heat recovery which reduces pervaporation energy usage by 67% is not considered.

Figure S8. Effect of ZIF-8 loading on the performance of the ZIF-8-PMPS membranes operated with 3 wt. % i-butanol aqueous solution at 80 °C.
Figure S9. Cross-sectional SEM image of ZIF-8-PMPS membrane at high ZIF-8 loading ($W_{\text{ZIF-8}} / W_{\text{PMPS}} = 0.20$).
Figure S10. Sodalite topology (left) and six-ring opening (right) of ZIF-7.
Figure S11. Experimental i-butanol adsorption and desorption isotherms of ZIF-7 at 40 °C.
Figure S12. Separation factor and alcohols permeability of silicalite-1 membrane (developed in our group) for aqueous solutions of C1 - C4 alcohols (3.0 wt. % alcohols, 60 °C). (1 Barrer = 1×10^{-10} \text{ cm}^3 (\text{STP}) \text{ cm}^{-2} \text{ s}^{-1} \text{ cmHg}^{-1}). \cite{1}

Although the aperture size of silicalite-1 zeolite is bigger than that of ZIF-8 (0.55 nm vs. 0.34 nm), silicalite-1 membrane shows a cut-off between C3 and C4 alcohols, owing to its rigid framework compared with the relative flexible framework of ZIF materials.

Table S1. Pervaporation performance for butanol recovery from water.

<table>
<thead>
<tr>
<th>Membrane</th>
<th>Feed concentration (wt. %)</th>
<th>Feed temperature (°C)</th>
<th>Total flux (kg m⁻² h⁻¹)</th>
<th>Separation factor</th>
<th>Butanol permeance (GPU) c</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge-ZSM-5</td>
<td>5 a</td>
<td>30</td>
<td>0.02</td>
<td>19.0</td>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>PTMSP</td>
<td>1.5 a</td>
<td>70</td>
<td>1.03</td>
<td>70.0</td>
<td>2994</td>
<td>2</td>
</tr>
<tr>
<td>PVDF</td>
<td>2.5 a</td>
<td>40</td>
<td>0.99</td>
<td>7.4</td>
<td>5296</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1 a</td>
<td>70</td>
<td>0.34</td>
<td>47.8</td>
<td>940</td>
<td>4</td>
</tr>
<tr>
<td>Si-PDMS-1</td>
<td>1 a</td>
<td>70</td>
<td>0.61</td>
<td>93.0</td>
<td>2468</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1 a</td>
<td>70</td>
<td>0.11</td>
<td>96.0</td>
<td>455</td>
<td>4</td>
</tr>
<tr>
<td>PUR</td>
<td>1 b</td>
<td>50</td>
<td>0.08</td>
<td>9.2</td>
<td>101</td>
<td>5</td>
</tr>
<tr>
<td>PEBA</td>
<td>1 b</td>
<td>50</td>
<td>0.24</td>
<td>23.2</td>
<td>665</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1 a</td>
<td>70</td>
<td>0.35</td>
<td>48.7</td>
<td>969</td>
<td>4</td>
</tr>
<tr>
<td>PDMS</td>
<td>1 b</td>
<td>50</td>
<td>0.07</td>
<td>40.0</td>
<td>292</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1 a</td>
<td>50</td>
<td>0.07</td>
<td>35.0</td>
<td>406</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1 a</td>
<td>37</td>
<td>0.10</td>
<td>34.0</td>
<td>1192</td>
<td>7</td>
</tr>
<tr>
<td>Si-PDMS-2</td>
<td>2 b</td>
<td>80</td>
<td>8.9</td>
<td>27.6</td>
<td>5852</td>
<td>8</td>
</tr>
<tr>
<td>ZIF-7-PMPS</td>
<td>3 b</td>
<td>80</td>
<td>6.1</td>
<td>32.7</td>
<td>3961</td>
<td>This work</td>
</tr>
<tr>
<td>ZIF-8-PMPS</td>
<td>3 b</td>
<td>80</td>
<td>8.6</td>
<td>34.9</td>
<td>5765</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td>1 b</td>
<td>80</td>
<td>6.4</td>
<td>40.1</td>
<td>6454</td>
<td>This work</td>
</tr>
</tbody>
</table>

a n-Butanol aqueous solution.

b i-Butanol aqueous solution.

c Some of the reported membranes thickness is unknown, so, for comparison, permeance was used (1 GPU = 1×10⁻⁶ cm³ (STP) cm⁻² s⁻¹ cmHg⁻¹).

